10 research outputs found

    Bitcoin over Tor isn't a good idea

    Get PDF
    Bitcoin is a decentralized P2P digital currency in which coins are generated by a distributed set of miners and transaction are broadcasted via a peer-to-peer network. While Bitcoin provides some level of anonymity (or rather pseudonymity) by encouraging the users to have any number of random-looking Bitcoin addresses, recent research shows that this level of anonymity is rather low. This encourages users to connect to the Bitcoin network through anonymizers like Tor and motivates development of default Tor functionality for popular mobile SPV clients. In this paper we show that combining Tor and Bitcoin creates an attack vector for the deterministic and stealthy man-in-the-middle attacks. A low-resource attacker can gain full control of information flows between all users who chose to use Bitcoin over Tor. In particular the attacker can link together user's transactions regardless of pseudonyms used, control which Bitcoin blocks and transactions are relayed to the user and can \ delay or discard user's transactions and blocks. In collusion with a powerful miner double-spending attacks become possible and a totally virtual Bitcoin reality can be created for such set of users. Moreover, we show how an attacker can fingerprint users and then recognize them and learn their IP address when they decide to connect to the Bitcoin network directly.Comment: 11 pages, 4 figures, 4 table

    Content and popularity analysis of Tor hidden services

    Get PDF
    Tor hidden services allow running Internet services while protecting the location of the servers. Their main purpose is to enable freedom of speech even in situations in which powerful adversaries try to suppress it. However, providing location privacy and client anonymity also makes Tor hidden services an attractive platform for every kind of imaginable shady service. The ease with which Tor hidden services can be set up has spurred a huge growth of anonymously provided Internet services of both types. In this paper we analyse the landscape of Tor hidden services. We have studied Tor hidden services after collecting 39824 hidden service descriptors on 4th of Feb 2013 by exploiting protocol and implementation flaws in Tor: we scanned them for open ports; in the case of HTTP services, we analysed and classified their content. We also estimated the popularity of hidden services by looking at the request rate for hidden service descriptors by clients. We found that while the content of Tor hidden services is rather varied, the most popular hidden services are related to botnets.Comment: 6 pages, 3 figures, 2 table

    Deanonymisation techniques for Tor and Bitcoin

    Get PDF
    This thesis is devoted to low-resource off-path deanonymisation techniques for two popular systems, Tor and Bitcoin. Tor is a software and an anonymity network which in order to confuse an observer encrypts and re-routes traffic over random pathways through several relays before it reaches the destination. Bitcoin is a distributed payment system in which payers and payees can hide their identities behind pseudonyms (public keys) of their choice. The estimated number of daily Tor users is 2,000,000 which makes it arguable the most used anonymity network. Bitcoin is the most popular cryptocurrency with market capitalization about 3.5 billion USD. In the first part of the thesis we study the Tor network. At the beginning we show how to remotely find out which Tor relays are connected. This effectively allows for an attacker to reduce Tor users' anonymity by ruling out impossible paths in the network. Later we analyze the security of Tor Hidden Services. We look at them from different attack perspectives and provide a systematic picture of what information can be obtained with very inexpensive means. We expose flaws both in the design and implementation of Tor Hidden Services that allow an attacker to measure the popularity of arbitrary hidden services, efficiently collect hidden service descriptors (and thus get a global picture of all hidden services in Tor), take down hidden services and deanonymize hidden services. In the second part we study Bitcoin anonymity. We describe a generic method to deanonymize a significant fraction of Bitcoin users and correlate their pseudonyms with their public IP addresses. We discover that using Bitcoin through Tor not only provides limited level of anonymity but also exposes the user to man-in-the middle attacks in which an attacker controls which Bitcoin blocks and transactions the user is aware of. We show how to fingerprint Bitcoin users by setting an "address cookie" on their computers. This can be used to correlate the same user across different sessions, even if he uses Tor, hidden-services or multiple proxies. Finally, we describe a new anonymous decentralized micropayments scheme in which clients do not pay services with electronic cash directly but submit proof of work shares which the services can resubmit to a crypto-currency mining pool. Services credit users with tickets that can later be used to purchases enhanced services

    TorScan: Tracing Long-lived Connections and Differential Scanning Attacks

    No full text
    Abstract. Tor is a widely used anonymity network providing low-latency communication capabilities. Around 400,000 users per day use Tor to route TCP traffic through a sequence of relays; three hops are selected from a pool of currently almost 3000 volunteer-operated Tor relays to comprise a route through the network for a limited time. In comparison to single-hop proxies, forwarding TCP streams through multiple relays increases the anonymity of the users significantly: each hop along the route only knows its successor and predecessor. The anonymity provided by Tor heavily relies on the hardness of linking a user’s entry and exit nodes. If an attacker gains access to the topological information about the Tor network instead of having to consider the network as a fully connected graph, this anonymity may be reduced. In fact, we have found ways to probe the connectivity of a Tor relay. We demonstrate how the resulting leakage of the Tor network topology can be used and present attacks to trace back a user from an exit relay to a small set of potential entry nodes.

    Proof-of-Work as Anonymous Micropayment: Rewarding a Tor Relay

    Get PDF
    In this paper we propose a new micropayments scheme which can be used to reward Tor relay operators. Tor clients do not pay Tor relays with electronic cash directly but submit proof of work shares which the relays can resubmit to a crypto-currency mining pool. Relays credit users who submit shares with tickets that can later be used to purchase improved service. Both shares and tickets when sent over Tor circuits are anonymous. The analysis of the crypto-currencies market prices shows that the proposed scheme can compensate significant part of Tor relay operator's expenses

    Deanonymisation of clients in Bitcoin P2P network

    Get PDF
    Bitcoin is a digital currency which relies on a distributed set of miners to mint coins and on a peer-to-peer network to broadcast transactions. The identities of Bitcoin users are hidden behind pseudonyms (public keys) which are recommended to be changed frequently in order to increase transaction unlinkability. We present an efficient method to deanonymize Bitcoin users, which allows to link user pseudonyms to the IP addresses where the transactions are generated. Our techniques work for the most common and the most challenging scenario when users are behind NATs or firewalls of their ISPs. They allow to link transactions of a user behind a NAT and to distinguish connections and transactions of different users behind the same NAT. We also show that a natural countermeasure of using Tor or other anonymity services can be cut-off by abusing anti-DoS countermeasures of the bitcoin network. Our attacks require only a few machines and have been experimentally verified. We propose several countermeasures to mitigate these new attacks

    TorScan: Deanonymizing Connections Using Topology Leaks

    No full text
    Tor is one of the most widely used tools for providing anonymity on the Internet. We have devised novel attacks against the Tor network that can compromise the anonymity of users accessing services that exhibit frequent and predictable communication patterns and users establishing long-lived connections

    Trawling for tor hidden services: Detection, measurement, deanonymization

    Get PDF
    Tor is the most popular volunteer-based anonymity network consisting of over 3000 volunteer-operated relays. Apart from making connections to servers hard to trace to their origin it can also provide receiver privacy for Internet services through a feature called "hidden services". In this paper we expose flaws both in the design and implementation of Tor's hidden services that allow an attacker to measure the popularity of arbitrary hidden services, take down hidden services and deanonymize hidden services. We give a practical evaluation of our techniques by studying: (1) a recent case of a botnet using Tor hidden services for command and control channels; (2) Silk Road, a hidden service used to sell drugs and other contraband; (3) the hidden service of the DuckDuckGo search engine
    corecore